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NOTE

On the Numerical Solution of the Cubic Schrodinger Equation
in One Space Variable

1. INTRODUCTION

Despite numerous numerical studies of the cubic non-
linear Schrédinger equation, many questions remain open.
In this note, we return to basic issues involving the time and
spatial discretizations of the equation defined over the entire
real line. Two spatial discretizations are considered, the
L*-Galerkin method with product approximation and
the integrabie finite difference scheme of Ablowitz and
Ladik [1]. The nonlinear implicit system of ordinary dif-
ferential equations (ODEs) arising from the L*-Galerkin
spatial discretization is solved by the code DO2NNF, an
ODE solver from the NAG library. The use of DO2NNF
surmounts numerous difficulties encountered by commonly
used time-stepping schemes. It is shown that the Galerkin
method suffers from an instability during long time integra-
tions with features similar to those observed for the periodic
problem. This instability may be avoided by using the
integrable finite difference scheme, with the time integration
performed by the NAG ODE solver DO2NCF. However,
the integrable scheme appears to be more susceptible to
phase errors than the L?-Galerkin method.

The ubiquitous nonlinear Schrédinger (NILS) equation is
given by

Bt +qlul?u=0, (x,1)e(—o,0)x(0,T], (la)
u(xs O)Zg(x)! XE(—CO,CO), (lb)
where 2= —1; u(x, t) and the given function g(x) are com-

plex-valued. We shall only consider the focusing case, that
is, we assume g to be a positive constant. Appropriate initial
conditions include the case where |g(x)| —= 0 as |x| — oo,
which we call the infinite line problem, and also the periodic
case where g(x + L) = g(x). Physically, the equation arises
in a number of situations. In general, it describes the
envelope solutions of weakly nonlinear dispersive systems;
see, for example, Newell [127. We note that (1a) is the
dimensionless form of the equation. Since the pioneering
work of Zakharov and Shabat [207, it has been shown that
the NLS equation has a truly remarkable analytical struc-
ture; see, for example, Ablowitz and Segur [2]. For our
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purposes, it is sufficient to note that it can be viewed as a
completely integrable, infinite dimensional Hamiltonian
system with Hamiltonian

H={ (lu? = q lul*) dx. (22)

A second integral invariant that is of interest is the squared
L? norm

C=j |2 dx. (2b)

The integrals in (2) are over the interval { —co, oo) or over
one spatial period. These constants are two of an infinite
number that are strongly connected to the integrability of
the equation.

Some of the other remarkable features associated with the
NLS equation include soliton solutions in the infinite line
problem and homoclinic orbits in the periodic case; see
Ercolani ef al. [67]. These features, combined with the fact
that explicit analytical solutions are often available, have
given rise to much interest in the NLS equation among
numerical analysts, For cxample, associated with the
homoclinic orbits of the periodic problem is a sensitivity to
small perturbations. This may lead to numerical instabilitics
and even spurious numerical chaos; see [8, 9]. One way of
avoiding this problem is to design integrabie discretizations
that preserve the qualitative structure of the phase space of
the analytical problem. This leads to significant improve-
ments whenever one attempts to calculate a solution in the
sensitive area near a homoclinic orbit.

Interesting numerical issues also arise in the infinite line
problem. For instance, a bound state of two or more
solitons develops steep temporal and spatial gradients,
which present a challenge for most numerical schemes. Since
these problems are defined over the entire real line, one has
gither to truncate the infinite interval or to introduce a
mapping from it to a finite interval that can be handled
numerically. Weideman and Cloot [19] have shown that
careful attention to the question of boundary conditions
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may significantly improve the quality and efficiency of the
numerical approximation.

In this note, we are interested in basic questions regarding
the temporal and spatial discretizations of the infinite line
problem. In order to simplify the discussion, we do not
address any of the issues invelving the boundary conditions.
Instead, we sacrifice efficiency by moving the boundaries far
enough out so that they do not interfere with the solution in
the interior. Accordingly, we restrict x to a finite interval
La, b7, chosen so that the modulus of the solution u(x, ¢) is
negligible for x outside [4a, #]. Homogeneous Neumann (or
Dirichlet) boundary conditions are imposed at x =a and
x = b, thereby converting the pure initial value problem (1)
into an initial boundary-value problem (IBVP). If the inter-
val [a, b7 is sufficiently large, the choice of Neumann or
Dirichlet boundary conditions i1s not critical, and as a
consequence we consider the IBVP

i+ u+qglulPu=0, (x, t)ela b)yx(0,T], (3a)
u(x,0)y=gix), xel(a b, (3b)
wla, ty=u.(b,1)=0, te[0,T], (3¢)

which is, in fact, the case most often examined in the
literature.

Several previous numerical studies have examined the use
of finite difference methods and finite element methods
based on the L>-Galerkin semi-discretization for solving
IBVPs of this form; see, for exampie, [7, 10, 14-17, 5, 18],
the case of homogeneous Dirichlet boundary conditions
being considered in the last two studies. On the other'hand,
the integrable scheme of Ablowitz and Ladik [1] has
received comparatively little attention in the numerical
analysis literature, despite the fact that it is eminently suited
for numerical calculations. Its main advantage is that, as
one would expect of an integrable scheme, it does not suffer
from nonlinear instabilities, unlike the standard numerical
methods. Although the integrable scheme captures the
qualities of the analytical solutions, it remains a second-
order approximation. In fact, we find that it suffers from
phase errors that are more severe than those of some of the
standard schemes of comparable accuracy.

Methods for the time discretization have received much
attention in the literature. However, none of the time
stepping schemes considered in previous studies has proved
to be entirely satisfactory for both the computation of the
modulus of the approximate solution and the determination
of approximations to the two conserved quantities C and H.
The situation is further complicated by the fact that the
linearized problem

U, =i,

has all of its eigenvalues on the imaginary axis. A time step-
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ping scheme with this property, such as the leapfrog scheme,
therefore seems to be appropriate. However, it has been
shown to suffer from blowup instabilities in the nonlinear
situation; see, for example, Sanz-Serna and Verwer [16].
This indicates that one should consider schemes that
include the imaginary axis in their regions of stability. This
excludes the higher order backward differentiation formulas
underlying the stiff systems solvers in the software librarics
such as NAG. An inspection of their stability regions reveals
that for problems with all eigenvalues on the imaginary axis,
the backward differentiation formulas are stable provided
the time step is large enough. However, this does not take
nonlinear effects into account and an examination of the use
of state-of-the-art software, specifically the codes DO2NNF
and DO2ZNCF, ODE solvers from the NAG library which
implement backward differentiation formulas, for the solu-
tion of the systems of nonlinear ordinary differential equa-
tions arising from the semi-discretizations of (3), shows that
these codes offer substantial improvement over commonly
used time-stepping schemes. Codes from the NAG library
were chosen for use in this study because of the wide
availibility of this library. One would expect software of
similar quality to perform in a comparable fashion,

2. BACKGROUND

2.1. The Test Problems

In our study we consider the solution of the NL.S in the
case of a bound state of solitons. This class of problems
poses a stringent test of numerical schemes due to the
steep spatial and temporal gradients encountered. The
L*-Galerkin scheme with product approximation has been
successfully employed for the solution of two simpler classes
of test problems, that of a single soliton (a traveling wave)
and the interaction of two solitons (two colliding waves);
see, for example, [7, 10, 13, 17, 18]. Extensive numerjcal
experiments using the L>-Galerkin method with product
approximation and DO2NNF for the solution of these
classes of problems were presented i [13].

The bound state of multiple solitons is a class of problems
in which the initial condition is

g(x) =sech(x) (4)

and g=2L? for L a positive integer. In this case, the
conserved quantities in (2) have the values

H=3(l~gq), C=2, (5)
respectively. The theoretical solutton for a bound state of

solitons is well known; see [ 11 ], for example. However, the
solution is not at present in a usable form if L = 3.
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2.2. The Numerical Methods
2.2.1. Spatial Discretization

The L?*-Galerkin spatial discretization applied to the
IBVP (3) was described by Griffiths et al. [7 ] and Herbst et
al. [10]. In each of these studies, the solution u of (3) is
approximated by

Ulx, 1) = Z Uj(t) éj(xL (6)
=0

J=

where {£;}[_,is the usual basis for the space of continuous
piccewise linear functions defined on a uniform grid with
spacing h = (b — a)/N. When product approximation [4] is
employed, the functions U, (#} = V,{t}+iW;{1) are defined
by

MU +h2SU + gMF(U) =0, (7

where the dot denotes differentiation with respect to time,

U=[V,, Wy, oo iy, WN]T,
F={F, .., F,17,
F,=[W,(V2+W2),—V,(VI+ W],

and M and § are the block tridiagonal matrices
M=LJ @I S=5,8I

with & denoting the matrix tensor product,
21
1 4 1

-1 1

Iis the 2 x 2 identity, and
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In practice we have found that entirely satisfactory resuits
are obtained when the initial approximation U(x, Q) is
determined by interpolating the initial data, in which case

U0 = gla+jh), j=0,1,., N

The second scheme which we consider is the integrable
finite difference scheme of Ablowitz and Ladik [1],
iU, +(U;_y =20+ U )R

+3q U1 (U + Uy ) =0 (8)

From its infinite number of conservation laws we singie out
the two corresponding to C and H, namely,

C,=hY UFU,_, (9a)
i
and
H,o=h=*Y [—RUFU,_,+ U, )
J
+4¢ " In(1 + $ K2qU, U M), (9b)

where * denotes complex conjugation. Note that the
Hamiltonian {9b} of the Ablowitz—Ladik scheme is a non-
obvious discretization of the analytical one. It should also
be pointed out that it has nonstandard Poisson brackets
although this fact is of no consequence in our present study.

2.2.2. Time Discretization

The system (7) is solved using DO2NNF, a general pur-
pose routine for integrating the initial value problem (IVP)
for a stiff system of implicit differential equations coupled
with algebraic equations of the form

Al y)y=glt,y),

see [3]. The time stepping is done using a backward dif-
ferentiation formula integrator. The explicir system (3} is
solved using DO2NCEF, a routine for integrating stiff systems
of explicit ODEs when the Jacobian is a banded matrix [3].
As in DOZNNF, the time stepping is performed by a
backward differentiation formula integrator,

2.2.3. Previous Studies

We now summarize several previous numerical studies
involving the case of a bound state of solitons. Herbst er al.
[10] examined {3} with the initial condition given by (4)
and g = 2L’ for L a positive integer. Since problems similar
to the g=2 case, a bound state of a single soliton, were
handled without difficulty in earlier studies (see, for
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example, [7, 15]), Herbst e a/. concentrated on the g=38
and ¢ =18 cases, and, for the spatial discretization, they
used the L*-Galerkin method (7). Herbst et al. derived
analogues of the conservation laws associated with (2) (for
the continucus-time Galerkin approximation U) when the
L>-Galerkin method is used without product approxima-
tion. When product approximation is employed, these laws
are no longer satisfied. However, the authors claimed that
discrete analogues of the conservation laws obtained using
the trapezoidal rule to approximate the integrals are
satisfied when “mass lumping” is applied to yield a finite dif-
ference scheme. Herbst e al. then utilized the implicit mid-
point rule and a modification of it due to Deifour er af. [5]
for the time discretization. In their numerical experiments,
Herbst er al. found that the ¢ =8 case presented no dif-
ficulties but they encountered significant challenges when
g=18. With ecither time-stepping scheme, the results
obtained using the L*-Galerkin space discretization were
superior to those arising from the mass lumping. However,
even in the L>-Galerkin results, the graph of |U| exhibited
noticeable deviations from the time-periodic behavior of |/,
and the approximations to H were not conserved to even a
single significant figure. The appearance of undesirable
downstream oscillations was another recurring problem.

Sanz-Serna and Verwer [ 16] considered a standard finite
difference scheme for the space discretization for the g =18
case and applied two time discretizations, the implicit
midpoint rule and a “pseudolinear” midpoint rule.
For sufficiently small mesh spacings in both space and
time (h=0.03125, with Ar=0.00625 for the former and
Ar=0.003125 for the latter), both methods integrated the
problem 'successfully. No approximations to the conserved
quantitics were presented.

Sanz-Serna and Christie [ 147 also considered the g =18
case, using a finite difference scheme for the space discretiza-
tion and the implicit midpoint rule for the time discretiza-
tion. They utilized adaptive mesh selection procedures in
both space and time. No three-dimensional graphs of |U}
and no values of approximations to the conserved guan-
tities C and H were presented. However, a cross section of
the graph of | U} at t = 0.98 was produced which was in close
agreement with a cross section of the graph of |U] at the
same value of r obtained using a uniform spatial grid with
h=1003125.

More recently, Shamardan [17] considered several test
problems, including a bound state of three solitons, using a
fourth-order finite difference discretization in space and
the implicit midpoint rule for the time integration. The
utilization of this approach with £A=0.0625 and 4:=0.01
produced an approximation to C'? which was perfectly
conserved and which agreed with C'? to seven decimal
places. However, the graph of the modulus of the
approximate solution had a non-symmetric appearance at
=25
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3. NUMERICAL EXPERIMENTS

All computations were performed on the University of
Kentucky’s IBM 3090-600J in double precision using its
vectorization facilities. The graphs were produced using
SAS/GRAPH.

3.1. Time Discretization

Once the initial approximation U(0Q) has been deter-
mined, the IVP (7} is solved using the NAG routine
DO2NNF. Prior to calling DO2NNF, calls are made to the
appropriate linear algebra setup routine and integrator
setup routine. Because of the structure of the coefficient
matrices and the nature of the function F, the Jacobian in
the L>-Galerkin method is considered as banded with upper
and lower bandwidth 3, and the linear algebra setup routine
DO02NTF is used. The NAG routine DO2ZNCEF is employed
for the solution of the explicit system (8). The integrator
setup routine used throughout this study is DO2ZNVF, which
implements the BDF (backward differentiation formula)
integrator. In our numerical experiments we use a uniform
grid in the x-direction with spacing k= (b —a)/N, as was
done in most of the previous studies. When using the
L>-Galerkin method with product approximation, the
graph of | Ui, the modulus of the approximate solution, is
obtained along with graphs of " and H’, approximations to
the two conserved quantities C, H, respectively, where
and H' are computed exactly using three-point Gauss
quadrature on each subinterval to evaluate the integrals

b b
[1wrax, | qur-iqiur)ax,

respectively. For comparison purposes the quantities C and
H, given by (5), are graphed on the same set of axes as C’
and H’'. Similarly, when using the integrable finite difference
scheme, C and H are graphed on the same set of axes as C,
and H,. Throughout this study, the maximum order of the
BDF integrator is set at 5, which provides us with entirely
satisfactory results. The quantities RTOL and ATOL,
tolerances used in a mixed relative and absolute local
error test in DO2NNF, are set at RTOL=10"% and
ATOL=10"%

3.2, Numerical Results
3.2.1. Bound State of Three Solitons

We [irst consider the case of a bound state of three soli-
tions, solving the problem using the £.2-Galerkin method

- with product approximation and DO2NNF. More extensive

numerical experiments using this approach on the same test
problem were given in [13].
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FIG. 1.

Bound state of three solitons, £.°-Galerkin method, ¥ = 640:
graph of {U/].

The spatial interval used is [ —20, 20], as in previous
studies. In all experiments involving this test problem, the
guantities ' and H' are computed and the graph of |U] is
drawn at

1,=00%, j=1,2,.,50.

At each point (x,t;), where the x, are 201 uniformly
spaced points, |U| is calculated from (6). The graphical
package then constructs the graph by connecting these
points by straight lines.

In this problem, the solution 1s time-periodic; the graph
of the modulus rises from the initial condition of
| g(x)| =sech(x) to reach a spike, followed by a pair of sym-
metric ridges, followed by a second spike, and then returns
to its initial shape to begin another period, a period being
approximately 0.8 units. The use of N =320 produces an
approximate solution whose graph is seriously in error after
approximately the first period. Increasing N to 640 produces
a satisfactory graph (Fig. 1 ). Some wave activity is nonethe-
less apparent away from the central spine. The same
phenomenon was observed in Figs. 4-10 of [10], where it

FIG. 2. Bound state of three solitons, £.2-Galerkin method, N = 1280:
graph of |U/].
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FIG. 3. Bound state of three solitons, Z2-Galerkin method, N = 640;
graphs of conserved quantities and approximations.

was referred to as “leaking (of) energy.” Figure 2 is
obtained with 1280 subintervals. The wave activity has been
eliminated, and other differences between this graph and
Fig. 1 are slight. Comparing the graphs, we can see that
increasing N retards the propagation of the numericai solu-
tion over time, with the result that the graph of |U| comes
closer to exhibiting the correct time-periodic behavior. Also,
the cross section of the graph of the modulus at ¢+ =2.5 is
perfectly symmetric about x =0, unlike the graph in [17].
As can be seen from Figs. 3 and 4, ' is always in close
agreement with C, while the behavior of H' improves
considerably as N is increased.

The graph in Fig. 4 of [16] was produced using a finite
difference spatial discretization with N =1280 and the
implicit midpoint rule for the time-stepping. The periodic
behavior is observed throughout, with the seventh spike just
beginning to form at 1 =2.5. Figure 2 of the present study
exhibits the correct behavior, In Figs. 9 and 10 of [10],
which were obtained using the L>-Galerkin method and

3
- C
Q
—
-3
-6
.......... H
-9
JR— H’
_12 T T T T T T
0.0 0.5 10 1.5 20 25

t

FIG. 4. Bound state of three solitons, £.%-Galerkin method, N = 1280:
graphs of conserved quantities and approximations.
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FIG. 5. Bound state of two solitons, integrable scheme, N = 80: graph
of |U].

product approximation with ¥ =400 and the midpoint rule
and modified midpoint rule, respectively, for the time dis-
cretization, the seventh spike has already occurred by
t =2.5. Herbst er al. indicated that their approximation to
was not conserved to even a single significant digit when
N=400.

By sufficiently increasing the value of N, we are able to
obtain results which are an improvement on those presented
by Herbst et al., who indicated that a further reduction in 4
and 4r did not produce significant changes in their solu-
tions. Since the only difference between our L>-Galerkin
method and that of Herbst ez af. is in the time-stepping, it
would appear that the use of DO2NNF is the source of the
improvement. By increasing N to 1280, Sanz-Serna and
Verwer were able to produce a graph of {U] of comparable
quality to those we have obtained, but they did not present
any values of approximations to the two conserved
quantities, C and H.

3.2.2. Long Time Integrations and the Integrable Scheme

In the case of a bound state of solitons, most of the
numerical experiments reported in the literature as well as

FIG. 6. Bound state of two solitons: graph of modulus of theoretical
sofution.

FIG. 7. Bound state of two solitons, Z>-Galerkin method, N =80:
graph of {L/].

the experiments discussed so far in this paper have been
restricted to integrating over fairly short time intervals. We
now investigate what happens in long time integrations. In
particular, we are interested in 4 comparison between the
L’-Galerkin method and the integrable finite difference
scheme of Ablowitz and Ladik. The test problem is the
bound state of two solitons, 1.e., ¢ = 8 with the initial condi-
tion (4). The spatial interval is again taken to be [ 20, 20]
and a uniform mesh spacing with 2= 0.5 is employed. We
compute up to =50, graphing |U| every 0.5 units of time
and plotting the solution at the grid points.

The graph of the modulus of the approximate solution
obtained using the integrable scheme is shown in Fig. 5. A
comparison with the graph of the modulus of the theoretical
solution (Fig. 6) shows that the integrable scheme suffers
from phase errors. Although the solution is qualitatively
correct, it does not produce the proper number of peaks
over the interval of integration. While the integrable scheme
maintains the qualitative behavior of the solution over this
long time integration, the Galerkin scheme suddenly
develops an instability in the form of a corruption of the

3
1
]
-1
-2 i
-3
-a H
H
-5 T T T T T T
] 10 20 30 10 50

t

FIG. 8. Bound state of two solitons, L>-Galerkin method, N =80:
graphs of conserved quantities and approximations.
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FIG. 9. Bound state of two solitons, integrable scheme, & = 80: graphs
of conserved quantities and approximations.

spatial structure by high frequency components, cf. Fig. 7.
Prior to the appearance of this instability, the Galerkin
scheme is more accurate than the integrable scheme.

Note that the instability develops with little or no
warning. A similar situation has been encountered in the
periodic problem. There, the instability consists of two com-
ponents—homoclinic crossings and a corruption of the spa-
tial structure. The latter is very similar to what we observe
in Fig. 7. In the pertodic case, the instability is traced to the
doubie points in the nonlinear spectrum of the associated
eigenvalue problem. In the present problem, defined over
the whoie real line, the high frequency components
observed in the spatial structure correspond to activating
the continuous spectrum of the associated linear eigenvalue
problem. An investigation of the origins of the instability in
the infinite line case is beyond the scope of this work.

The behavior of the approximations to the conserved
quantities C and H is also informative. The quantities
¢’ and H' computed from the Galerkin solution exhibit

L* Error
1.0

!

08 ' A

0.6 P

Q2

0,04z - ‘ , . -
o 1 2 1 k) 4 5

FIG. 10. Bound state of two solitons, integrable scheme, & =320:
L2 error.
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FIG. 11. Bound state of two solitons, L2-Galerkin method, N = 320:
L? error.

noticeable oscillations, corresponding to the spikes in the
graph of U] (Fig. 8). These variations become somewhat
less pronounced once the instability appears around ¢ = 30,
but after this has occurred, C" and H' do not approach C
and A at subsequent times. On the other hand, C, and H,,
computed from the soluticn obtained using the integrable
scheme, are well conserved (Fig. 9). However, they differ
from the values of C and H. In numerical experiments
conducted with the integrable scheme over shorter time
intervals, we have observed that C,— C and H,— H as
h—0.

As a final observation, we note that when either method
is employed, the L error displays a “staircase” behavior
with increasing ¢, at least until phase errors or instabilities
intervene. This is illustrated by the graphs in Figs. 10 and
11, produced, respectively, using the integrable scheme
(with DO2NCF) and the Galerkin scheme (with DO2NNF)
and solving the problem on [—20,20]x[0,5] with
£=0.125 and output every 0.1 units of time. In each case,
the periodic jumps in the Z? error correspond to the
appearance of spikes in the graph of |U|.

4. CONCLUDING REMARKS

The resuits of numerical experiments demonstrate the
efficacy of the NAG routine DO2NNF. For exampie, in the
case of a bound state of three solitons, we obtain a graph of
U] which is comparabie to the best one presented in [16]
and of higher accuracy than those presented in [10, 17].
The conservation laws are no longer satisfied by the
L2-Galerkin semi-discretization when product approxima-
tion is employed. Nevertheless, we have obtained values of
approximations to the two quantities C and A which are
approximately constant and, in many instances, substantial
improvements over those previously presented. When the
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exact values C and H are known, the values of the
approximations to these two quantities obtained in our
experiments are in close agreement with them.

We have also identified an instability in long time integra-
tions that we expect to observe with many of the standard,
nonintegrable space discretizations during long-time inte-
grations, This is clearly a nonlinear instability and a detailed
study of this phenomenon involves the structure of its
associated nonlinear spectrum and is beyond the scope of
the present investigation. However, we have demonstrated
that the instability may be avoided using the integrable dis-
cretization of Ablewitz and Ladik. On the other hand, this
scheme appears to be more susceptible to phase crrors than
the L>-Galerkin scheme. Also, integrable schemes are
designed specifically for individual problems and more
general numerical techniques remain as important as ever.

ACKNOWLEDGMENTS

We thank Bernard Bialecki, Karin Bennett, and Ryan Fernandes of the
Unjversity of Kentucky for their assistance during the preparation of this
paper, and Ian Gladwell of Southern Methodist University for valuable
advice during the initial phases of this investigation. This research was
supporied in part by funds from the National Science Foundation Grant
RII-861067t and the Commonwealth of Kentucky through the University
of Kentucky's Center for Computational Sciences.

REFERENCES

1. M. J. Ablowitz and J. F. Ladik, Stud. Appl. Mazh. 55, 213 (1976},
- 2. M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering

Transform (SIAM, Philadelphia, 1981).

3. M. Berzins, R. W. Brankin, and 1. Gladwell, Numerical Analysis
Report 143, Dept. of Mathematics, University of Manchester, 1987.

4. L Christie, D, F. Griffiths, A. R. Mitchell, and J, M. Sanz-Serna, IMA
J. Numer. Anal. 1, 253 (1981).

5. M. Delfour, M. Fortin, and G. Payre, J. Comput. Phys. 44, 277 (1981).

6. N. Ercolani, M. G. Forest, and D. W. McLaughlin, Physica D, to
appear.

7. D. F. Griffiths, A. R, Mitchell, and J. L1 Morris, Comput. Methods
Appl. Mech. Eng. 45, 177 (1984).

ROBINSON, FAIRWEATHER, AND HERBST

8. B. M. Herbst and M. J. Ablowitz, Phys. Rev. Lerr. 62, 2065 (1989).

9. B. M. Herbst and M. J. Ablowitz, in Integrable Svstems and Applica-
tions, edited by M. Balabane, P. Lochak, and C. Sulem, Lecture Notes
in Physics, Vol. 342 (Springer-Verlag, Berlin, 1989).

10. B. M. Herbst, J. L1, Morris, and A. R. Mitchell, J. Comput. Phys. 60,
282 (1985}

11, J. W. Miles, SI4M J. Appl. Marh. 41, 227 (1981).

12. A. C. Newell, Solitons in Mathematics and Physics
Philadelphia, 1985).

13. M. Robinson and G. Fairweather, Technical Report CCS-89-4,
University of Kentucky Center for Computational Sciences,
Lexington, Kentucky, 1989,

14. ). M. Sanz-Serna and 1. Christie, J. Comput. Phys. 67, 348 (1986).

15. J. M. Sanz-Serna and V. 5. Manoranjan, J. Compur, Phys. 52, 273
(1983).

16. ], M. Sanz-Serna and J. G. Verwer, IMA J. Numer. Anal. 6, 25 (1986).
17. A. B. Shamardan, Comput. Math. Appi. 19, 67 (1990).
18. Y. Tourigny and J. L1 Morris, J. Comput. Phys. 76, 103 {1988).

19. J, A. C. Weideman and A. Cloot, Comput. Methods Appl. Mech. Eng.
80, 467 (1990).

20. V. E. Zakharov and A. B. Shabat, Sov. Phys. JETP 34, 62 (1972).

(SIAM,

Received November 1, 1990; revised October 18, 1991

M. P. ROBINSON

Department of Mathematics
Western Kentucky University
Bowling Green, Kentucky 42101

G. FAIRWEATHER

Departments of Marhematics
and Engineering Mechanics
University of Kentucky
Lexington, Kentucky 40506

B. M. HErBST

Depariment of Applied Mathematics
University of the Orange Free State
Bloemfontein 9300

Republic of South Africa



